9 research outputs found

    Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees

    Get PDF
    Significance Contributions of rare variants to common and complex traits such as type 2 diabetes (T2D) are difficult to measure. This paper describes our results from deep whole-genome analysis of large Mexican-American pedigrees to understand the role of rare-sequence variations in T2D and related traits through enriched allele counts in pedigrees. Our study design was well-powered to detect association of rare variants if rare variants with large effects collectively accounted for large portions of risk variability, but our results did not identify such variants in this sample. We further quantified the contributions of common and rare variants in gene expression profiles and concluded that rare expression quantitative trait loci explain a substantive, but minor, portion of expression heritability.</jats:p

    Chemically induced discotic liquid crystals

    No full text

    A robust benchmark for detection of germline large deletions and insertions

    No full text
    New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution, and comprehensiveness. To help translate these methods to routine research and clinical practice, we developed the first sequence-resolved benchmark set for identification of both false negative and false positive germline large insertions and deletions. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle (GIAB) Consortium integrated 19 sequence-resolved variant calling methods from diverse technologies. The final benchmark set contains 12745 isolated, sequence-resolved insertion (7281) and deletion (5464) calls ≥50 base pairs (bp). The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.51 Gbp and 5262 insertions and 4095 deletions supported by ≥1 diploid assembly. We demonstrate the benchmark set reliably identifies false negatives and false positives in high-quality SV callsets from short-, linked-, and long-read sequencing and optical mapping
    corecore